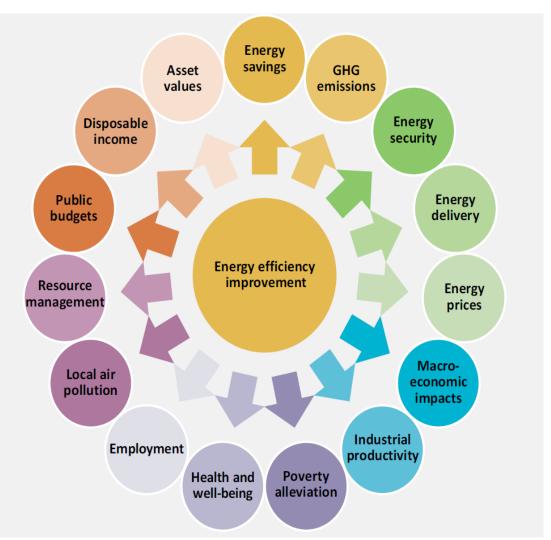


Strategic Energy Efficiency & Financing

Tim Leach

AASB – Fall Boardsmanship

Sept. 18, 2016



Energy efficiency is a smart investment

Multiple benefits of energy efficiency

Background

American Recovery & Reinvestment Act funds

Benchmarking Energy Audits White Paper

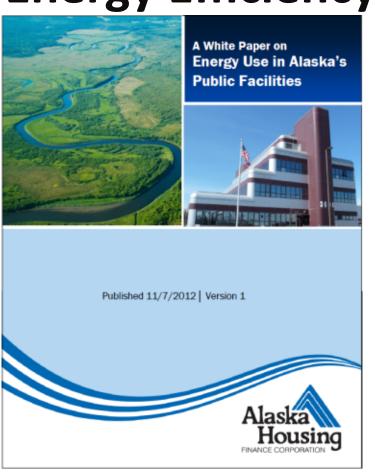
Alaska Energy Efficiency Revolving Loan Fund

Outreach
Technical Assistance

© iStockphoto.com

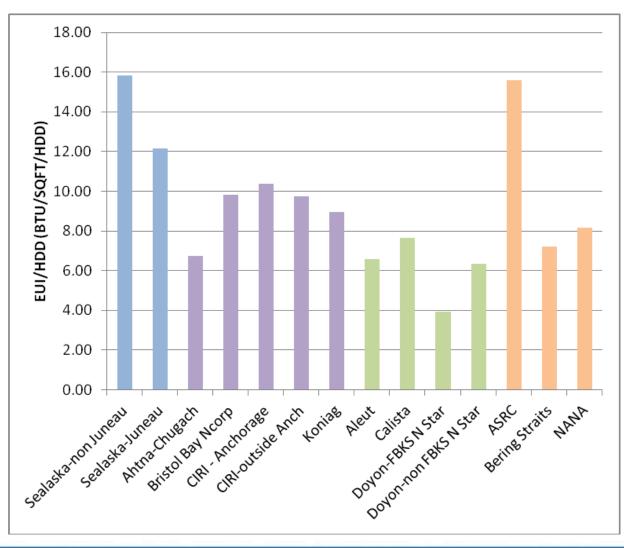

Department of Energy funds

Strategic Energy Management Practices Guide


Energy Efficiency Potential

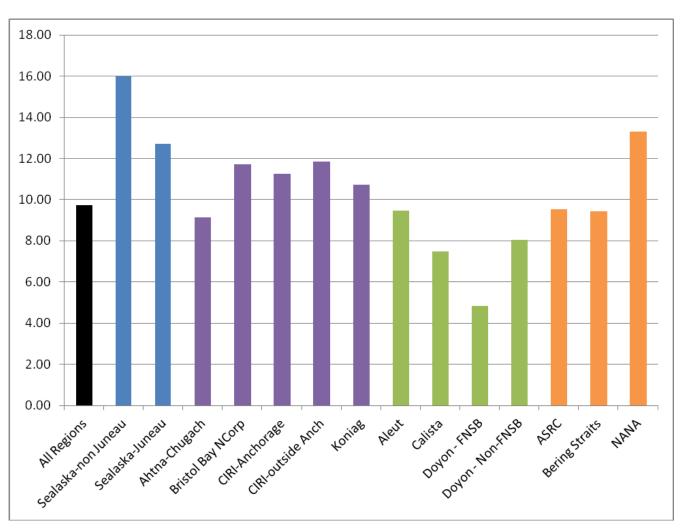
- Public buildings 5,000 in AK
- Average age 33 yrs.
- Annual energy expenditure - \$640 million
- AK has some of the highest energy costs in the US

Energy Efficiency Works



The take away:

- Assuming average savings of 20%, potential annual savings of \$125 million in our public facilities
- EE can help reduce costs and focus limited public dollars on core activities



Average EUI by region

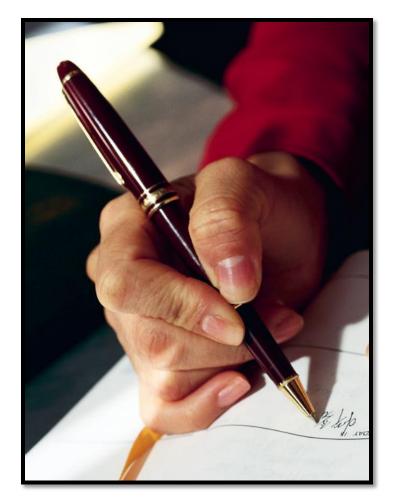
Average School EUI by region

Fruit on the ground

- Turn it off:
 - School Refrigerators in summer
 - Vending machines when building not occupied – cheap timers work well
 - Boilers, HVAC, lights, fans, pumps when building is unoccupied
 - Computers and office equipment when not occupied

Low Hanging Fruit

- Track energy use
- Re-program controls to actual operations
- Occupancy sensors
- Tune up existing equipment
 boilers, HVAC, controls,
 - etc.



Overhead Fruit

- Build efficiency into planned maintenance
 - Pump, motor or ballast replacement
- Consolidate modular design to reduce energy load to underutilized areas
- Retro-commissioning
- Educate operators on specific systems snowmelt, DDC, Lighting controllers, etc.
- Demand controlled ventilation
- Lighting retrofits

- 1. Develop an energy policy
 - Set goals

- 1. Develop an energy policy
 - Set goals
- 2. Establish an Energy Conservation Coordinator/Manager

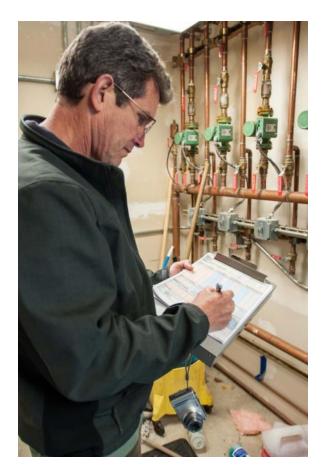
- 1. Develop an energy policy
 - Set goals
- 2. Establish an Energy Conservation Coordinator/Manager
- 3. Develop an energy management plan
 - Establish a level of accountability

- 1. Develop an energy policy
 - Set goals
- 2. Establish an Energy Conservation Coordinator/Manager
- 3. Develop an energy management plan
 - Establish a level of accountability
- 4. Provide Operator Training

- 1. Develop an energy policy
 - Set goals
- 2. Establish an Energy Conservation Coordinator/Manager
- 3. Develop an energy management plan
 - Establish a level of accountability
- 4. Provide Operator Training
- 5. Prioritize efficiency retrofits

Impact of Energy Policy

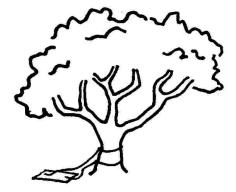
Photo credit McCool Carlson Green mcgalaska.com

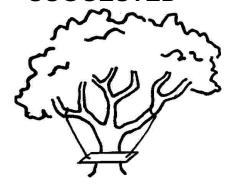

- Energy efficiency goals & design standards signal owner intent
- 70% annual savings Machetanz School

Impact of Energy Management

The Bottom Line: It pays to know how much energy you use, and where and when you use it.

Energy Management, cont.

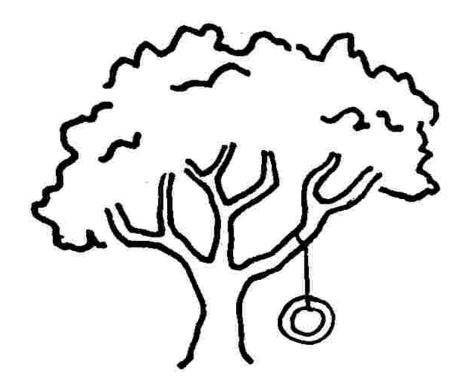

☐ Avoid this...


WHAT MARKETING SUGGESTED

WHAT MANAGEMENT APPROVED

AS DESIGNED BY ENGINEERING

AS MANUFACTURED



AS INSTALLED

Energy Management, cont.

☐ Goals, Communication & Accountability

WHAT I REALLY WANTED!!

Impact of Operator Training

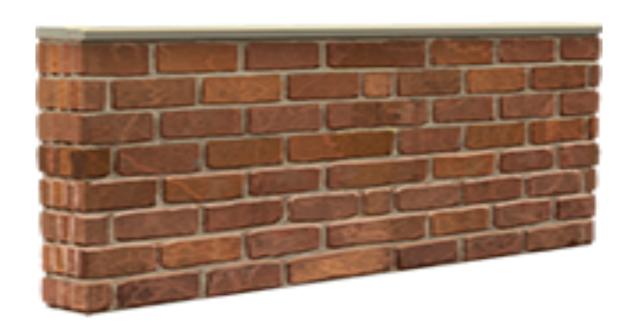
Impact of Priorities – Cost of Delay

Cash Flow Calculator

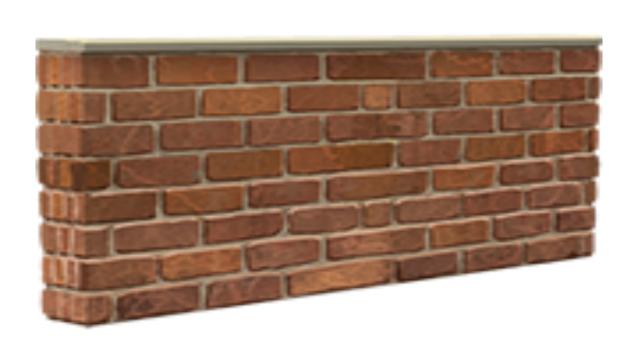
Pre-Retrofit Annual Energy Expenditure	\$460,000	Cost for Improvements	\$ 563,000	Loan Term (yrs.)	6
Post-Retrofit Annual Energy Expenditure	\$317,000	Design/Engineering	\$ 84,450	Interest Rate	2.500%
Post Retrofit Annual Energy Cost Savings	\$143,000	Project Management	\$ 16,890	Number of Payments per year	12
Post Retrofit Annual Energy Savings %	31%	Contingency	\$ 56,300	Down Payment	\$
Energy Cost Annual Escalation Rate	2.0%	Project Costs - Down Payment	\$ 720,640	Discount Rate	8.0%
Assumed Project Life	15				

Impact of Priorities – Cost of Delay

INVESTMENT ANALYSIS		
Project Cost	\$ 720,640	Includes applicable incentives or down payment of \$0
Internal Rate of Return (IRR)	21%	Assumes 2.0% annual utility cost increase
Simple Payback	5.04	Only applicable if using internal funds
Cost of Delay (6 Months)	\$ 84,081	Lost incremental cash flow from waiting to implement project
Life Cycle Savings	\$1,739,051	Assumes loan and immediate action, with 15 year equipment life
Annual Savings		
With loan payment	\$ 22,789	Represents average energy cost savings - loan payments
		Represents increased cash flow from energy cost savings, in
No loan payment	\$ 168,161	scenarios where no loan is taken, or where loan is paid off



Energy efficiency is a wise investment



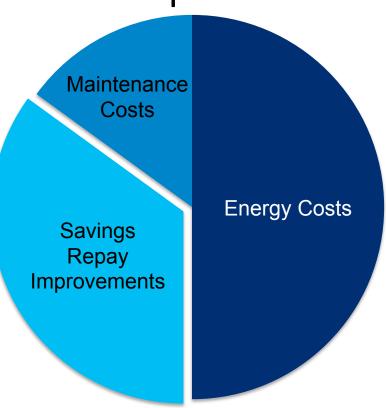
But if it makes so much sense...?

But if it makes so much sense...?

Mechanisms for investing in EE:

- Grant
- Cash
- Loan

Financing, can I afford it?



Before Improvements

Maintenance Costs **Energy Costs**

After Improvements

☐ Alaska Housing Finance Corporation

Alaska Energy Efficiency Revolving Loan Program

(AEERLP)

State, Municipal, Schools and the University of Alaska

No minimum /maximum

Development costs reimbursable

AHFC's AEERLP Rates

09/06/16					
Year	Rate				
1	1.500				
2	1.625				
3	1.750				
4	1.875				
5	2.125				
6	2.250				
7	2.500				
8	2.625				
9	2.750				
10	2.875				
11	3.125				
12	3.250				
13	3.375				
14	3.500				
15	3.500				

- ☐ United States Dept. of Agriculture
 - Rural Development Community Facilities

Loans and grants

Construct or improve facilities

Rural requirement

☐ Rural Community Assistance Program (RCAC)

Non & for-profits, public and tribal governments

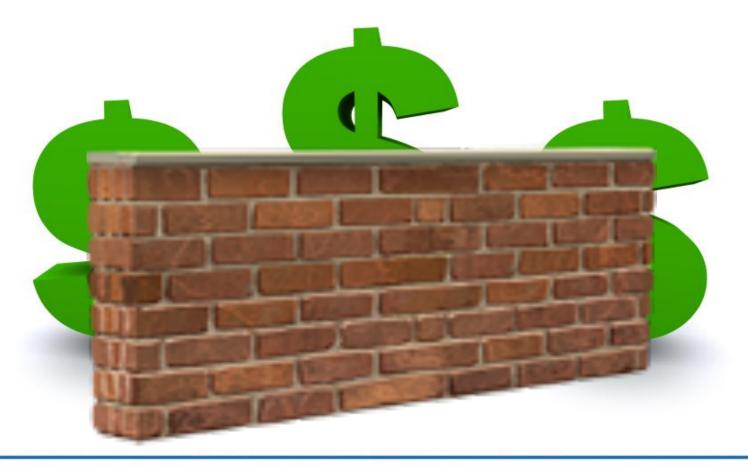
Housing, community facilities, small business

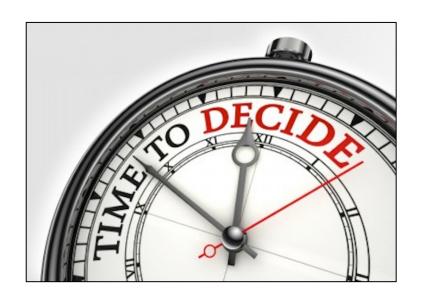
Short-term loans for project development available

☐ Commercial Lenders

Lender originated to lender standards

Lease purchase available


May be more restrictive than state programs



If it makes so much sense...?

Barriers beyond money

Knowledge and motivation to pursue energy project financing

Before you can finance:

- You need energy use information
- A solid scope of work
- And something to back up the loan
- Sometimes it's worth it to ask for help from a project developer

Project Developers

Project Development

Preliminary development phase:

- Benchmark
- Portfolio analysis
- Work with stakeholders
- Walk through energy audits
- Evaluate technical feasibility
- Evaluate funding alternatives

Project Development

Development phase:

- Level 2 energy audits
- Develop scope of work
- Final package for financing
- Contracts awarded
- Construction commences
- Commissioning
- Measurement & Verification

Facilitating Energy Efficiency Projects

- DOE Remote Alaska Communities Energy Efficiency (RACEE) Competition
- 2. DOT prequalified Energy Efficiency Project Developers
- AHFC's Technical Assistance Center & Kickstarter grants

Thank You

Alaska Housing Finance Corporation

https://www.ahfc.us/efficiency/

Energy Efficiency Technical Assistance Center

eetac@ahfc.us

1-877-257-3228

or

Tim Leach

tleach@ahfc.us

907-330-8198

